DocumentCode :
1231882
Title :
Nonlinear System Identification With Composite Relevance Vector Machines
Author :
Camps-Valls, Gustavo ; Martínez-Ramón, Manel ; Rojo-Álvarez, José Luis ; Muñoz-Marí, Jordi
Author_Institution :
Dep. d´´Enginyeria Electronica, Valencia Univ.
Volume :
14
Issue :
4
fYear :
2007
fDate :
4/1/2007 12:00:00 AM
Firstpage :
279
Lastpage :
282
Abstract :
Nonlinear system identification based on relevance vector machines (RVMs) has been traditionally addressed by stacking the input and/or output regressors and then performing standard RVM regression. This letter introduces a full family of composite kernels in order to integrate the input and output information in the mapping function efficiently and hence generalize the standard approach. An improved trade-off between accuracy and sparsity is obtained in several benchmark problems. Also, the RVM yields confidence intervals for the predictions, and it is less sensitive to free parameter selection
Keywords :
nonlinear systems; regression analysis; support vector machines; composite kernels; composite relevance vector machine; mapping function; nonlinear system identification; standard RVM regression; Bayesian methods; Desktop publishing; Function approximation; Kernel; Nonlinear systems; Signal processing algorithms; Stacking; Support vector machine classification; Support vector machines; System identification; Composite kernels; nonlinear system identification; relevance vector machine (RVM);
fLanguage :
English
Journal_Title :
Signal Processing Letters, IEEE
Publisher :
ieee
ISSN :
1070-9908
Type :
jour
DOI :
10.1109/LSP.2006.885290
Filename :
4130389
Link To Document :
بازگشت