DocumentCode :
1232018
Title :
Sensor Support Systems for Asymmetric Threat Countermeasures
Author :
Shen, Chung-Ching ; Kupershtok, Roni ; Adl, Sanaz ; Bhattacharyya, Shuvra S. ; Goldsman, Neil ; Peckerar, Martin
Author_Institution :
Dept. of Electr. & Comput. Eng., Univ. of Maryland, College Park, MD
Volume :
8
Issue :
6
fYear :
2008
fDate :
6/1/2008 12:00:00 AM
Firstpage :
682
Lastpage :
692
Abstract :
In the past, primary focus has been given to novel sensor elements for deployment against urban terrorists and in limited force engagements. The issue explored in this paper is the adequacy of electronic system support for these new sensing elements. For example, ad hoc distributed networks must lie dormant for long periods of time and ldquocome aliverdquo when threats are nearby. This presents a unique challenge in the storage, generation, and management of power. In this paper, we demonstrate designs of processor algorithms and telecommunication protocols that alleviate current power-system shortcomings for these stationary networks. These advances include: 1) low-power protocols for data fusion and fault tolerance and 2) system-level energy modeling and analysis. As a concrete example, we define a distributed sensor support system for line crossing recognition. We demonstrate that threat detection is a system-level problem. Single elements of the system chain individually have small impact on overall performance. Through the development of a preamplifier/amplifier chain for optimum signal-to-noise (S/N) ratio, we show the degree to which system-level architecture can improve reliable detection. Specifically, the use of sensor redundancy to improve performance is analyzed from a statistical basis.
Keywords :
protocols; wireless sensor networks; asymmetric threat countermeasures; distributed sensor support system; electronic system support; optimum signal-to-noise ratio; processor algorithms; system-level architecture; telecommunication protocols; Electronic countermeasures; Energy management; Force sensors; Fusion power generation; Power generation; Power system management; Process design; Protocols; Sensor systems; Terrorism; Distributed algorithms; low-power modeling; system-level developments; wireless sensor networks;
fLanguage :
English
Journal_Title :
Sensors Journal, IEEE
Publisher :
ieee
ISSN :
1530-437X
Type :
jour
DOI :
10.1109/JSEN.2008.922726
Filename :
4529216
Link To Document :
بازگشت