This paper investigates some of the properties of a class of two-level codes with constrained run length, whose use has been proposed for purposes of bandwidth compression. It is shown that such codes can indeed reduce the bandwidth containing a given percentage of the transmitted power. To communicate information, however, different transmitted codewords must be distinguishable at the receiver, and this requires that the channel bandwidth be sufficiently wide to allow the difference waveform to propagate. It is demonstrated that decreasing the

-percent bandwidth using these codes leads to a rapid increase in the difference waveform bandwidth, and hence in the channel bandwidth necessary to maintain error rate performance. Thus, these codes are bandwidth expansion codes in disguise. Signal-to-noise ratio and channel bandwidth requirements for these codes are discussed and compared with those of

-level codes [pulse-amplitude modulation (PAM)] for two kinds of receivers.