DocumentCode :
1247406
Title :
Hierarchical least squares identification methods for multivariable systems
Author :
Ding, Feng ; Chen, Tongwen
Author_Institution :
Control Sci. & Eng. Res. Center, Southern Yangtze Univ., Edmonton, Canada
Volume :
50
Issue :
3
fYear :
2005
fDate :
3/1/2005 12:00:00 AM
Firstpage :
397
Lastpage :
402
Abstract :
For multivariable discrete-time systems described by transfer matrices, we develop a hierarchical least squares iterative (HLSI) algorithm and a hierarchical least squares (HLS) algorithm based on a hierarchical identification principle. We show that the parameter estimation error given by the HLSI algorithm converges to zero for the deterministic cases, and that the parameter estimates by the HLS algorithm consistently converge to the true parameters for the stochastic cases. The algorithms proposed have significant computational advantage over existing identification algorithms. Finally, we test the proposed algorithms on an example and show their effectiveness.
Keywords :
discrete time systems; iterative methods; least squares approximations; matrix algebra; multivariable control systems; recursive estimation; hierarchical least squares identification methods; hierarchical least squares iterative algorithm; multivariable discrete-time systems; parameter estimation error; transfer matrices; Automatic control; Control systems; Eigenvalues and eigenfunctions; Least squares methods; MIMO; Stability analysis; Convergence properties; estimation; hierarchical identification principle; least squares; multivariable systems; recursive identification;
fLanguage :
English
Journal_Title :
Automatic Control, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9286
Type :
jour
DOI :
10.1109/TAC.2005.843856
Filename :
1406136
Link To Document :
بازگشت