• DocumentCode
    1248053
  • Title

    The Degree of Balanced Elementary Symmetric Boolean Functions of {{\\bf 4k}+{\\bf 3}} Variables

  • Author

    Gao, Guang-Pu ; Liu, Wen-Fen ; Zhang, Xi-Yong

  • Author_Institution
    Dept. of Appl. Math., Zhengzhou Inf. Sci. & Technol. Inst., Zhengzhou, China
  • Volume
    57
  • Issue
    7
  • fYear
    2011
  • fDate
    7/1/2011 12:00:00 AM
  • Firstpage
    4822
  • Lastpage
    4825
  • Abstract
    In this paper, we consider the conjecture that σ2t+1l-1,2t are the only nonlinear balanced elementary symmetric Boolean functions where t and l are positive integers. We prove if n=2t+1l-1, l odd and 2t+1nmid d, σn,d is balanced if and only if d=2k, 1 ≤ kt. Our results verify most cases of the conjecture for n ≡ 3 (mod 4) .
  • Keywords
    Boolean functions; algebraic degree; balanced elementary symmetric Boolean function; positive integer; Boolean functions; Cryptography; Equations; Hamming weight; Information science; Measurement; Algebraic degree; Boolean functions; Lucas´ theorem; balancedness; elementary symmetric;
  • fLanguage
    English
  • Journal_Title
    Information Theory, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0018-9448
  • Type

    jour

  • DOI
    10.1109/TIT.2011.2145910
  • Filename
    5895065