DocumentCode :
1254474
Title :
Sequences of optimal identifying codes
Author :
Laihonen, Tero K.
Author_Institution :
Dept. of Math., Turku Univ., Finland
Volume :
48
Issue :
3
fYear :
2002
fDate :
3/1/2002 12:00:00 AM
Firstpage :
774
Lastpage :
776
Abstract :
Locating faulty processors in a multiprocessor system gives the motivation for identifying codes. Denote by l the maximum number of simultaneously malfunctioning processors. We show that if l⩾3, then the problem of finding the smallest cardinality of a (1, ⩽l)-identifying code in a binary hypercube is equivalent to the problem of finding the smallest size of a (2l-1)-fold 1-covering. This observation yields infinite sequences of optimal identifying codes for every l (l⩾3)
Keywords :
binary codes; binary sequences; fault diagnosis; multiprocessing systems; optimisation; binary hypercube; covering codes; faulty processors location; infinite sequences; malfunctioning processors; multiprocessor system; optimal identifying codes; smallest cardinality; Error correction codes; Fault diagnosis; Hamming distance; Hamming weight; Hypercubes; Mathematics; Multiprocessing systems;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/18.986043
Filename :
986043
Link To Document :
بازگشت