• DocumentCode
    1256830
  • Title

    Multiphase stabilization

  • Author

    Gouda, Mohamed G.

  • Author_Institution
    Dept. of Comput. Sci., Texas Univ., Austin, TX, USA
  • Volume
    28
  • Issue
    2
  • fYear
    2002
  • fDate
    2/1/2002 12:00:00 AM
  • Firstpage
    201
  • Lastpage
    208
  • Abstract
    We generalize the concept of stabilization of computing systems. According to this generalization, the actions of a system S are partitioned into n partitions, called phase 1 through phase n. In this case, system S is said to be n-stabilizing to a state predicate Q iff S has state predicates P.0, ..., P.n such that P.0=true, P.n=Q, and the following two conditions hold for every j, 1⩽j⩽n. First, if S starts at a state satisfying P.(j-1) and if the only actions of S that are allowed to be executed are those of phase j or less, then S will reach a state satisfying P.j. Second, the set of states satisfying P.j is closed under any execution of the actions of phase j or less. By choosing n=1, this generalization degenerates to the traditional definition of stabilization. We discuss three advantages of this generalization over the traditional definition. First, this generalization captures many stabilization properties of systems that are traditionally considered nonstabilizing. Second, verifying stabilization when n>1 is usually easier than when n=1. Third, this generalization suggests a new method of fault recovery, called multiphase recovery
  • Keywords
    stability; system recovery; computing systems; multiphase recovery; multiphase stabilization; state predicate; Convergence; Fault tolerant systems; Tail;
  • fLanguage
    English
  • Journal_Title
    Software Engineering, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0098-5589
  • Type

    jour

  • DOI
    10.1109/32.988499
  • Filename
    988499