DocumentCode
1265151
Title
Nonequilibrium model for semiconductor laser modulation response
Author
Chow, Weng W. ; Schneider, Hans Christian ; Koch, Stephan W. ; Chang, Chih-Hao ; Chrostowski, Lukas ; Chang-Hasnain, Connie J.
Author_Institution
Sandia Nat. Labs., Albuquerque, NM, USA
Volume
38
Issue
4
fYear
2002
fDate
4/1/2002 12:00:00 AM
Firstpage
402
Lastpage
409
Abstract
Presents a laser model for describing the effects of nonequilibrium carrier distributions. The approach is based on the coupled Maxwell-semiconductor-Bloch equations, with carrier-carrier and carrier-phonon collisions treated in the relaxation rate approximation. Using examples involving relaxation oscillation, current modulation, and optical injection, we demonstrate how the model can be used to study the influences of spectral hole burning, dynamic carrier population bottleneck, and plasma heating on semiconductor laser modulation response
Keywords
electron-phonon interactions; laser theory; optical hole burning; optical modulation; quantum well lasers; semiconductor lasers; semiconductor plasma; surface emitting lasers; VCSEL; carrier-carrier collisions; carrier-phonon collisions; coupled Maxwell-semiconductor-Bloch equations; current modulation; dynamic carrier population bottleneck; nonequilibrium carrier distributions; nonequilibrium model; optical injection; plasma heating; quantum-well gain structure; relaxation oscillation; relaxation rate approximation; semiconductor laser modulation response; spectral hole burning; Heating; Laser modes; Laser theory; Maxwell equations; Optical modulation; Plasma temperature; Quantum well lasers; Semiconductor lasers; Surface emitting lasers; Ultrafast optics;
fLanguage
English
Journal_Title
Quantum Electronics, IEEE Journal of
Publisher
ieee
ISSN
0018-9197
Type
jour
DOI
10.1109/3.992554
Filename
992554
Link To Document