Title :
High-Performance Energy-Efficient Multicore Embedded Computing
Author :
Munir, Arslan ; Ranka, Sanjay ; Gordon-Ross, Ann
Author_Institution :
Dept. of Electr. & Comput. Eng., Univ. of Florida, Gainesville, FL, USA
fDate :
4/1/2012 12:00:00 AM
Abstract :
With Moore´s law supplying billions of transistors on-chip, embedded systems are undergoing a transition from single-core to multicore to exploit this high-transistor density for high performance. Embedded systems differ from traditional high-performance supercomputers in that power is a first-order constraint for embedded systems; whereas, performance is the major benchmark for supercomputers. The increase in on-chip transistor density exacerbates power/thermal issues in embedded systems, which necessitates novel hardware/software power/thermal management techniques to meet the ever-increasing high-performance embedded computing demands in an energy-efficient manner. This paper outlines typical requirements of embedded applications and discusses state-of-the-art hardware/software high-performance energy-efficient embedded computing (HPEEC) techniques that help meeting these requirements. We also discuss modern multicore processors that leverage these HPEEC techniques to deliver high performance per watt. Finally, we present design challenges and future research directions for HPEEC system development.
Keywords :
benchmark testing; embedded systems; microprocessor chips; multiprocessing systems; HPEEC system development; HPEEC technique; Moore law; benchmark performance; embedded application; embedded system; first-order constraint; hardware power; high-performance energy-efficient multicore embedded computing; high-performance supercomputer; high-transistor density; multicore processor; on-chip transistor density; software power; thermal management; Embedded systems; Layout; Multicore processing; Software reliability; Supercomputers; High-performance computing (HPC); embedded systems.; energy-efficient computing; green computing; low power; multicore;
Journal_Title :
Parallel and Distributed Systems, IEEE Transactions on
DOI :
10.1109/TPDS.2011.214