• DocumentCode
    128681
  • Title

    Robust observer-based fault detection via evolutionary optimization with applications to wind turbine systems

  • Author

    Yongjia Zhu ; Zhiwei Gao

  • Author_Institution
    Fac. of Math. & Phys. Sci., Univ. of Coll. London, London, UK
  • fYear
    2014
  • fDate
    9-11 June 2014
  • Firstpage
    1627
  • Lastpage
    1632
  • Abstract
    In this paper, a robust fault detection filter is designed for a 3MW wind turbine system. The parameter eigenvalue assignment approaches and evolutionary optimal algorithms are integrated to seek optimal observer gain such that the residual signal is sensitive to the fault, but robustness against the disturbances. From all the simulations, the performance of fault detections is satisfactory.
  • Keywords
    eigenvalues and eigenfunctions; evolutionary computation; genetic algorithms; observers; power generation control; robust control; wind turbines; evolutionary optimal algorithms; parameter eigenvalue assignment; power 3 MW; robust fault detection filter; robust observer based fault detection; wind turbine systems; Actuators; Eigenvalues and eigenfunctions; Fault detection; Observers; Optimization; Robustness; Wind turbines; fault diagnosis; genetic algorithm; parameter eigenvalue assignment; robust observer design; wind turbine systems;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Industrial Electronics and Applications (ICIEA), 2014 IEEE 9th Conference on
  • Conference_Location
    Hangzhou
  • Print_ISBN
    978-1-4799-4316-6
  • Type

    conf

  • DOI
    10.1109/ICIEA.2014.6931428
  • Filename
    6931428