Title :
A fast and simple algorithm for the calculation of convective heat transfer by large vessels in three-dimensional inhomogeneous tissues
Author :
Mooibroek, Jaap ; Lagendijk, Jan J W
Author_Institution :
Dept. of Radiotherapy, Univ. Hospital Utrecht, Netherlands
fDate :
5/1/1991 12:00:00 AM
Abstract :
Three-dimensional anatomical data of tissues and vessel structures are decomposed into elementary cubic nodes by a special digitizing routine with vessels represented by connected strings of vessel nodes. Vessel cross sections may be irregularly shaped and/or tapered. Conductive and convective heat transfer was calculated through use of the heat balance technique on each cubic node, resulting in an explicit finite-difference computational scheme. Employing a three-time-level scheme, the Fourier stability criterion is circumvented allowing arbitrary time steps to be defined in the algorithm. Time steps as large as 100 times the Fourier restricted one still result in stable and convergent calculations of the stationary temperature distribution. Vessels with different flows and diameters are incorporated by performing a vessel-specific second discretization step in time. Using the new algorithm as a mathematical tool the thermal equilibration lengths of vessel segments have been established under a broad range of geometrical and flow conditions. Validation followed from comparing transient and stationary temperature distributions derived by the proposed algorithm to those from an accurate cylindrical numerical model. Predicted values for the thermal equilibration lengths are compared to an analytical expression and phantom experiments.
Keywords :
biothermics; convection; physiological models; 3-time-level scheme; 3D anatomical data; 3D inhomogeneous tissues; Fourier stability criterion; accurate cylindrical numerical model; algorithm; analytical expression; conductive heat transfer; convective heat transfer; digitizing routine; elementary cubic nodes; explicit finite-difference computational scheme; large vessels; mathematical tool; temperature distributions; thermal equilibration lengths; vessel cross sections; Blood flow; Cancer; Finite difference methods; Heat transfer; Hyperthermia; Imaging phantoms; Numerical models; Stability criteria; Temperature distribution; Temperature sensors; Algorithms; Energy Transfer; Heat; Hyperthermia, Induced; Mathematical Computing; Models, Cardiovascular; Models, Structural;
Journal_Title :
Biomedical Engineering, IEEE Transactions on