• DocumentCode
    129013
  • Title

    Real-time trust evaluation in integrated circuits

  • Author

    Yier Jin ; Sullivan, Dean

  • Author_Institution
    Dept. of Electr. Eng. & Comput. Sci., Univ. of Central Florida, Orlando, FL, USA
  • fYear
    2014
  • fDate
    24-28 March 2014
  • Firstpage
    1
  • Lastpage
    6
  • Abstract
    The use of side-channel measurements and fingerprinting, in conjunction with statistical analysis, has proven to be the most effective method for accurately detecting hardware Trojans in fabricated integrated circuits. However, these post-fabrication trust evaluation methods overlook the capabilities of advanced design skills that attackers can use in designing sophisticated Trojans. To this end, we have designed a Trojan using power-gating techniques and demonstrate that it can be masked from advanced side-channel fingerprinting detection while dormant. We then propose a real-time trust evaluation framework that continuously monitors the on-board global power consumption to monitor chip trustworthiness. The measurements obtained corroborate our frameworks effectiveness for detecting Trojans. Finally, the results presented are experimentally verified by performing measurements on fabricated Trojan-free and Trojan-infected variants of a reconfigurable linear feedback shift register (LFSR) array.
  • Keywords
    integrated circuits; invasive software; shift registers; statistical analysis; LFSR array; Trojan-free variants; Trojan-infected variants; advanced design skills; chip trustworthiness; hardware Trojan detection; integrated circuits; on-board global power consumption; post-fabrication trust evaluation methods; power-gating techniques; real-time trust evaluation framework; reconfigurable linear feedback shift register array; side-channel fingerprinting detection; side-channel measurements; Erbium; Hardware; Power demand; Power measurement; Semiconductor device measurement; Testing; Trojan horses;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Design, Automation and Test in Europe Conference and Exhibition (DATE), 2014
  • Conference_Location
    Dresden
  • Type

    conf

  • DOI
    10.7873/DATE.2014.104
  • Filename
    6800305