DocumentCode
1291133
Title
An improved upper bound on the minimum distance of doubly-even self-dual codes
Author
Krasikov, Ilia ; Litsyn, Simon
Author_Institution
Sch. of Math. Sci., Tel Aviv Univ., Israel
Volume
46
Issue
1
fYear
2000
fDate
1/1/2000 12:00:00 AM
Firstpage
274
Lastpage
278
Abstract
We derive a new upper bound on the minimum distance d of doubly-even self-dual codes of length n. Asymptotically, for n growing, it gives limn→∞ sup d/n⩽(5-53/4)/10<0.165630, thus improving on the Mallows-Odlyzko-Sloane bound of 1/6 and our recent bound of 0.166315
Keywords
binary codes; dual codes; polynomials; Krawtchouk polynomials; Mallows-Odlyzko-Sloane bound; doubly-even self-dual codes; minimum distance; upper bound; Algebra; Combinatorial mathematics; Entropy; Linear code; Linear programming; Polynomials; Rain; Upper bound; Writing; Yield estimation;
fLanguage
English
Journal_Title
Information Theory, IEEE Transactions on
Publisher
ieee
ISSN
0018-9448
Type
jour
DOI
10.1109/18.817527
Filename
817527
Link To Document