Title :
A characterization of codes with extreme parameters
Author :
Faldum, A. ; Willems, W.
Author_Institution :
Fakultat fur Math., Otto-von-Guericke-Univ., Magdeburg, Germany
fDate :
11/1/1996 12:00:00 AM
Abstract :
Let C be an [n,k,d]-code over GP(q) with k⩾2. Let s=def(C)=n+1-k-d denote the defect of C. The Griesmer bound implies that d⩽q(s+1). If d>qs and s⩾2, then using a previous result of Faldum and Willems, k⩽q. Thus fixing s⩾2 the extreme parameters for a code with def(C)=s are d=q(s+1); k=q, and n=k+d+s-1=(q+1)(s+2)-3. In this correspondence we characterize the codes with such parameters
Keywords :
linear codes; Griesmer bound; [n,k,d]-code; characterization; extreme parameter code; Application software; Binary sequences; Computer science; Encyclopedias; Galois fields; Linear code; Notice of Violation; Polynomials; Spread spectrum communication;
Journal_Title :
Information Theory, IEEE Transactions on