Title :
An Evolutionary Multiobjective Sleep-Scheduling Scheme for Differentiated Coverage in Wireless Sensor Networks
Author :
Sengupta, Soumyadip ; Das, Swagatam ; Nasir, Md ; Vasilakos, Athanasios V. ; Pedrycz, Witold
Author_Institution :
Dept. of Electron. & Telecommun. Eng., Jadavpur Univ., Kolkata, India
Abstract :
We propose an online, multiobjective optimization (MO) algorithm to efficiently schedule the nodes of a wireless sensor network (WSN) and to achieve maximum lifetime. Instead of dealing with traditional grid or uniform coverage, we focus on the differentiated or probabilistic coverage where different regions require different levels of sensing. The MO algorithm helps to attain a better tradeoff among energy consumption, lifetime, and coverage. The algorithm can be run every time a node failure occurs due to power failure of the node battery so that it may reschedule the network. This scheduling is modeled as a combinatorial, multiobjective, and constrained optimization problem with energy and noncoverage as the two objectives. The basic evolutionary multiobjective optimizer used is known as decomposition-based multiobjective evolutionary algorithm (MOEA/D) which is modified by integrating the concept of fuzzy Pareto dominance. The performance of the resulting algorithm, which is called MOEA/DFD, is compared with the performance of the original MOEA/D, which is another very well known MO algorithm called nondominated sorting genetic algorithm (NSGA-II), and an IBM optimization software package called CPLEX. In all the tests, MOEA/DFD is observed to outperform all other algorithms.
Keywords :
Pareto optimisation; fuzzy set theory; genetic algorithms; scheduling; wireless sensor networks; CPLEX; IBM optimization software package; MOEA/D; NSGA-II; constrained optimization problem; decomposition based multiobjective evolutionary algorithm; differentiated coverage; evolutionary multiobjective sleep scheduling scheme; fuzzy Pareto dominance; multiobjective optimization; node battery; node failure; nondominated sorting genetic algorithm; power failure; probabilistic coverage; traditional grid coverage; uniform coverage; wireless sensor networks; Event detection; Linear programming; Optimization; Sensors; Vectors; Wireless sensor networks; Density control; differentiated coverage; evolutionary multiobjective optimization (MO); node deployment; wireless sensor networks (WSNs);
Journal_Title :
Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on
DOI :
10.1109/TSMCC.2012.2196996