DocumentCode
1330787
Title
Some bounds for the minimum length of binary linear codes of dimension nine
Author
Bouyukliev, Iliya ; Guritman, Sugi ; Vavrek, Vesselin
Author_Institution
Inst. of Math., Bulgarian Acad. of Sci., Tarnovo, Bulgaria
Volume
46
Issue
3
fYear
2000
fDate
5/1/2000 12:00:00 AM
Firstpage
1053
Lastpage
1056
Abstract
We prove the nonexistence of binary [69,9,32] codes and construct codes with parameters [76,9,34],[297,9,146], and [300,9,148]. These results show that n(9,32)=70, n(9,34)⩽76,n(9,146)=297, and n(9,148)=300, where n(k,d) denotes the smallest value of n for which there exists an [n,k,d] binary code. We also present some codes of minimum distance 32 and some related codes
Keywords
binary codes; linear codes; binary linear codes; dimension nine codes; minimum distance; minimum length bounds; Block codes; Convolutional codes; Lattices; Linear code; Maximum likelihood decoding; Maximum likelihood detection; Maximum likelihood estimation; Notice of Violation; Vectors; Viterbi algorithm;
fLanguage
English
Journal_Title
Information Theory, IEEE Transactions on
Publisher
ieee
ISSN
0018-9448
Type
jour
DOI
10.1109/18.841184
Filename
841184
Link To Document