• DocumentCode
    1330787
  • Title

    Some bounds for the minimum length of binary linear codes of dimension nine

  • Author

    Bouyukliev, Iliya ; Guritman, Sugi ; Vavrek, Vesselin

  • Author_Institution
    Inst. of Math., Bulgarian Acad. of Sci., Tarnovo, Bulgaria
  • Volume
    46
  • Issue
    3
  • fYear
    2000
  • fDate
    5/1/2000 12:00:00 AM
  • Firstpage
    1053
  • Lastpage
    1056
  • Abstract
    We prove the nonexistence of binary [69,9,32] codes and construct codes with parameters [76,9,34],[297,9,146], and [300,9,148]. These results show that n(9,32)=70, n(9,34)⩽76,n(9,146)=297, and n(9,148)=300, where n(k,d) denotes the smallest value of n for which there exists an [n,k,d] binary code. We also present some codes of minimum distance 32 and some related codes
  • Keywords
    binary codes; linear codes; binary linear codes; dimension nine codes; minimum distance; minimum length bounds; Block codes; Convolutional codes; Lattices; Linear code; Maximum likelihood decoding; Maximum likelihood detection; Maximum likelihood estimation; Notice of Violation; Vectors; Viterbi algorithm;
  • fLanguage
    English
  • Journal_Title
    Information Theory, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0018-9448
  • Type

    jour

  • DOI
    10.1109/18.841184
  • Filename
    841184