• DocumentCode
    1344147
  • Title

    Hyperbolic splines and nonlinear distortion

  • Author

    Martin, Richard ; Lever, Ken ; McCarthy, Jeff

  • Author_Institution
    Inst. for Telecommun. Res., Univ. of South Australia, Adelaide, SA, Australia
  • Volume
    48
  • Issue
    6
  • fYear
    2000
  • fDate
    6/1/2000 12:00:00 AM
  • Firstpage
    1825
  • Lastpage
    1828
  • Abstract
    Using Mobius transformations, we consider how to interpolate a set of monotone increasing data points (xk, yk) so that the interpolant is a smooth invertible function and that the interpolant and its inverse have the same simple functional form. We use our method to cancel jammer-induced distortion in a nonlinear channel
  • Keywords
    interference suppression; interpolation; inverse problems; jamming; nonlinear distortion; signal processing; splines (mathematics); telecommunication channels; Mobius transformations; hyperbolic splines; invertibility; jammer-induced distortion cancellation; monotone increasing data points interpolation; nonlinear channel; nonlinear distortion; smooth invertible function; Australia; Jamming; Nonlinear distortion; Piecewise linear approximation; Piecewise linear techniques; Polynomials;
  • fLanguage
    English
  • Journal_Title
    Signal Processing, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    1053-587X
  • Type

    jour

  • DOI
    10.1109/78.845946
  • Filename
    845946