DocumentCode :
1359949
Title :
A Decomposition Method for Nonlinear Parameter Estimation in TRANSCEND
Author :
Bregon, Anibal ; Biswas, Gautam ; Pulido, Belarmino
Author_Institution :
Dept. of Comput. Sci., Univ. of Valladolid, Valladolid, Spain
Volume :
42
Issue :
3
fYear :
2012
fDate :
5/1/2012 12:00:00 AM
Firstpage :
751
Lastpage :
763
Abstract :
Fault isolation and identification are necessary components for system reconfiguration and fault adaptive control in complex systems. However, accurate and timely on-line fault identification in nonlinear systems can be difficult and computationally expensive. In this paper, we improve the quantitative fault identification scheme in the TRANSCEND diagnosis approach. First, we propose to use possible conflicts (PCs) to find the set of minimally redundant subsystems that can be used for parameter estimation. Second, we introduce new algorithms for computing PCs from the temporal causal graph model used in TRANSCEND. Third, we use the minimal estimators to decompose the system model into smaller, independent subsystems for the parameter estimation task. We demonstrate the feasibility of this method by running experiments on a simulated model of the reverse osmosis subsystem of the advanced water recovery system developed at the NASA Johnson Space Center. Our results show a considerable reduction in parameter estimation time without loss of accuracy and robustness in the estimation.
Keywords :
adaptive control; fault diagnosis; graph theory; large-scale systems; nonlinear control systems; parameter estimation; reverse osmosis; water treatment; NASA Johnson Space Center; TRANSCEND diagnosis approach; advanced water recovery system; decomposition method; fault adaptive control; fault identification scheme; fault isolation; nonlinear parameter estimation; nonlinear systems; possible conflicts; reverse osmosis subsystem; system reconfiguration; temporal causal graph model; Computational modeling; Equations; Estimation; Junctions; Mathematical model; Parameter estimation; Robustness; Fault identification; fault isolation; parameter estimation; possible conflicts (PCs); system decomposition;
fLanguage :
English
Journal_Title :
Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on
Publisher :
ieee
ISSN :
1083-4427
Type :
jour
DOI :
10.1109/TSMCA.2011.2170065
Filename :
6059508
Link To Document :
بازگشت