DocumentCode :
1365170
Title :
Noisy Data and Impulse Response Estimation
Author :
Beheshti, Soosan ; Dahleh, Munther A.
Author_Institution :
Dept. of Electr. & Comput. Eng., Ryerson Univ., Toronto, ON, Canada
Volume :
58
Issue :
2
fYear :
2010
Firstpage :
510
Lastpage :
521
Abstract :
This paper investigates the impulse response estimation of linear time-invariant (LTI) systems when only noisy finite-length input-output data of the system is available. The competing parametric candidates are the least square impulse response estimates of possibly different lengths. It is known that the presence of noise prohibits using model sets with large number of parameters as the resulting parameter estimation error can be quite large. Model selection methods acknowledge this problem, hence, they provide metrics to compare estimates in different model classes. Such metrics typically involve a combination of the available least-square output error, which decreases as the number of parameters increases, and a function that penalizes the size of the model. In this paper, we approach the model class selection problem from a different perspective that is closely related to the involved denoising problem. The method primarily focuses on estimating the parameter error in a given model class of finite order using the available least-square output error. We show that such an estimate, which is provided in terms of upper and lower bounds with certain level of confidence, contains the appropriate tradeoffs between the bias and variance of the estimation error. Consequently, these measures can be used as the basis for model comparison and model selection. Furthermore, we demonstrate how this approach reduces to the celebrated AIC method for a specific confidence level. The performance of the method as the noise variance and/or the data length varies is explored, and consistency of the approach as the data length grows is analyzed.
Keywords :
FIR filters; IIR filters; error analysis; estimation theory; least mean squares methods; transient response; AIC method; FIR filters; IIR filters; data length; least square impulse response estimation; linear time-invariant systems; noisy finite-length input-output data; parameter estimation error; LTI system modeling; Least square estimate; noisy data;
fLanguage :
English
Journal_Title :
Signal Processing, IEEE Transactions on
Publisher :
ieee
ISSN :
1053-587X
Type :
jour
DOI :
10.1109/TSP.2009.2032031
Filename :
5233793
Link To Document :
بازگشت