• DocumentCode
    1367097
  • Title

    Recursive subspace identification of Hammerstein models based on least squares support vector machines

  • Author

    Bako, L. ; Mercere, G. ; Lecoeuche, Stephane ; Lovera, Marco

  • Author_Institution
    Dept. Inf. et Autom., Ecole des Mines de Douai, Douai, France
  • Volume
    3
  • Issue
    9
  • fYear
    2009
  • fDate
    9/1/2009 12:00:00 AM
  • Firstpage
    1209
  • Lastpage
    1216
  • Abstract
    A recursive scheme for the identification of SIMO Hammerstein models is presented. In the proposed scheme, first the Markov parameters of the system are determined, by a least squares support vector machines regression through an over-parameterisation technique. Then, a state-space realisation of the system is retrieved using a recursive subspace identification method. Simulation results are provided to demonstrate the effectiveness of the algorithm.
  • Keywords
    Markov processes; identification; least squares approximations; recursive estimation; state-space methods; support vector machines; Markov parameters; SIMO Hammerstein models; least squares support vector machines; over-parameterisation technique; recursive subspace identification; state-space realisation;
  • fLanguage
    English
  • Journal_Title
    Control Theory & Applications, IET
  • Publisher
    iet
  • ISSN
    1751-8644
  • Type

    jour

  • DOI
    10.1049/iet-cta.2008.0339
  • Filename
    5235423