Title :
Recursive subspace identification of Hammerstein models based on least squares support vector machines
Author :
Bako, L. ; Mercere, G. ; Lecoeuche, Stephane ; Lovera, Marco
Author_Institution :
Dept. Inf. et Autom., Ecole des Mines de Douai, Douai, France
fDate :
9/1/2009 12:00:00 AM
Abstract :
A recursive scheme for the identification of SIMO Hammerstein models is presented. In the proposed scheme, first the Markov parameters of the system are determined, by a least squares support vector machines regression through an over-parameterisation technique. Then, a state-space realisation of the system is retrieved using a recursive subspace identification method. Simulation results are provided to demonstrate the effectiveness of the algorithm.
Keywords :
Markov processes; identification; least squares approximations; recursive estimation; state-space methods; support vector machines; Markov parameters; SIMO Hammerstein models; least squares support vector machines; over-parameterisation technique; recursive subspace identification; state-space realisation;
Journal_Title :
Control Theory & Applications, IET
DOI :
10.1049/iet-cta.2008.0339