DocumentCode
1367571
Title
A simulation-based estimator for hidden Markov random fields
Author
Veijanen, Ari
Author_Institution
Dept. of Stat., Helsinki Univ., Finland
Volume
13
Issue
8
fYear
1991
fDate
8/1/1991 12:00:00 AM
Firstpage
825
Lastpage
830
Abstract
An estimator for estimating the parameters of a Markov random field X from inaccurate observations is introduced. The author considers first a Markov (Gibbs) random field X ={X i,j} on a lattice L ={(i ,j ): i =1,2,. . .,n ; j =1,2,. . .,m }. The marginal distributions of (X i,j, X i+u,j+v) (u ,v =-1,0,1) are first estimated from an image. Then, random fields X * are simulated with the probability of X *i+u,j+v)=b nearly equal to the estimate of P {X i,j=X i+u,=b }. A simulation method similar to the Gibbs sampler is used. The parameters of the Markov random field model are estimated from the X *´s with the pseudolikelihood method
Keywords
Markov processes; parameter estimation; picture processing; probability; Gibbs sampler; hidden Markov random fields; parameter estimation; picture processing; probability; pseudolikelihood method; simulation-based estimator; Analytical models; Frequency estimation; Hidden Markov models; Image analysis; Image restoration; Lattices; Layout; Markov random fields; Parameter estimation; Probability;
fLanguage
English
Journal_Title
Pattern Analysis and Machine Intelligence, IEEE Transactions on
Publisher
ieee
ISSN
0162-8828
Type
jour
DOI
10.1109/34.85674
Filename
85674
Link To Document