• DocumentCode
    1367571
  • Title

    A simulation-based estimator for hidden Markov random fields

  • Author

    Veijanen, Ari

  • Author_Institution
    Dept. of Stat., Helsinki Univ., Finland
  • Volume
    13
  • Issue
    8
  • fYear
    1991
  • fDate
    8/1/1991 12:00:00 AM
  • Firstpage
    825
  • Lastpage
    830
  • Abstract
    An estimator for estimating the parameters of a Markov random field X from inaccurate observations is introduced. The author considers first a Markov (Gibbs) random field X={Xi,j} on a lattice L={(i ,j): i=1,2,. . .,n; j=1,2,. . .,m}. The marginal distributions of (Xi,j, Xi+u,j+v) (u,v=-1,0,1) are first estimated from an image. Then, random fields X* are simulated with the probability of X*i+u,j+v)=b nearly equal to the estimate of P{Xi,j=X i+u,=b}. A simulation method similar to the Gibbs sampler is used. The parameters of the Markov random field model are estimated from the X*´s with the pseudolikelihood method
  • Keywords
    Markov processes; parameter estimation; picture processing; probability; Gibbs sampler; hidden Markov random fields; parameter estimation; picture processing; probability; pseudolikelihood method; simulation-based estimator; Analytical models; Frequency estimation; Hidden Markov models; Image analysis; Image restoration; Lattices; Layout; Markov random fields; Parameter estimation; Probability;
  • fLanguage
    English
  • Journal_Title
    Pattern Analysis and Machine Intelligence, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0162-8828
  • Type

    jour

  • DOI
    10.1109/34.85674
  • Filename
    85674