DocumentCode
137160
Title
Directional cell search for millimeter wave cellular systems
Author
Barati, C. Nicolas ; Hosseini, S.A. ; Rangan, Sundeep ; Pei Liu ; Korakis, T. ; Panwar, Shivendra S.
Author_Institution
Polytech. Sch. of Eng., Dept. of Electr. & Comput. Eng., NYU, New York, NY, USA
fYear
2014
fDate
22-25 June 2014
Firstpage
120
Lastpage
124
Abstract
Millimeter wave (mmW) bands between 30 and 300 GHz are considered a promising candidate for next-generation cellular networks to relieve spectral congestion in conventional cellular frequencies. However, cellular communication at these frequencies will likely require highly directional transmissions to achieve suitable signal range. This reliance on directional beamforming complicates initial cell search since the mobile and base station must jointly search over a potentially large angular directional space to locate a suitable path to initiate communication. This paper proposes a directional cell search procedure where each base station periodically transmits synchronization signals in randomly varying directions. Detectors are derived for this synchronization signal based on a Generalized Likelihood Ratio Test (GLRT) for the case where (i) the mobile has only analog beamforming (where the mobile can “look” in only direction at a time) and (ii) digital beamforming where the mobile has access to digital samples from all antennas. Simulations under realistic parameters demonstrate that mobiles may not be able to achieve suitable detection performance with analog beamforming alone. In contrast, digital beamforming offers dramatically better performance. We argue that the additional power consumption cost of digital beamforming can be offset by using very low quantization rates with minimal performance loss, thus arguing that low-rate fully digital front-ends may be a better design choice for directional cell search.
Keywords
array signal processing; cellular radio; next generation networks; statistical testing; synchronisation; analog beamforming; angular directional space; base station; cellular communication; cellular frequencies; digital beamforming; directional beamforming; directional cell search procedure; directional transmissions; frequency 30 GHz; frequency 300 GHz; generalized likelihood ratio test; millimeter wave cellular systems; mobile station; next-generation cellular networks; spectral congestion; synchronization signal transmission; Array signal processing; Bandwidth; Base stations; Mobile communication; Signal to noise ratio; Synchronization; Vectors;
fLanguage
English
Publisher
ieee
Conference_Titel
Signal Processing Advances in Wireless Communications (SPAWC), 2014 IEEE 15th International Workshop on
Conference_Location
Toronto, ON
Type
conf
DOI
10.1109/SPAWC.2014.6941329
Filename
6941329
Link To Document