DocumentCode
1376201
Title
Document image decoding by heuristic search
Author
Kam, Anthony C. ; Kopec, Gary E.
Author_Institution
MIT, USA
Volume
18
Issue
9
fYear
1996
fDate
9/1/1996 12:00:00 AM
Firstpage
945
Lastpage
950
Abstract
This correspondence describes an approach to reducing the computational cost of document image decoding by viewing it as a heuristic search problem. The kernel of the approach is a modified dynamic programming (DP) algorithm, called the iterated complete path (ICP) algorithm, that is intended for use with separable source models. A set of heuristic functions are presented for decoding formatted text with ICP. Speedups of 3-25 over DP have been observed when decoding text columns and telephone yellow pages using ICP and the proposed heuristics
Keywords
Markov processes; computational complexity; decoding; document image processing; dynamic programming; heuristic programming; image processing; iterative methods; search problems; ICP algorithm; computational cost; document image decoding; dynamic programming; heuristic functions; heuristic search; iterated complete path algorithm; telephone yellow pages; text columns; Computational efficiency; Costs; Dynamic programming; Heuristic algorithms; Hyperspectral imaging; Image segmentation; Iterative closest point algorithm; Iterative decoding; Kernel; Viterbi algorithm;
fLanguage
English
Journal_Title
Pattern Analysis and Machine Intelligence, IEEE Transactions on
Publisher
ieee
ISSN
0162-8828
Type
jour
DOI
10.1109/34.537350
Filename
537350
Link To Document