DocumentCode
1378131
Title
Characterization of Electrophotographic Print Artifacts: Banding, Jitter, and Ghosting
Author
Eid, Ahmed H. ; Ahmed, Mohamed N. ; Cooper, Brian E. ; Rippetoe, Edward E.
Author_Institution
Lexmark Int. Inc., Lexington, KY, USA
Volume
20
Issue
5
fYear
2011
fDate
5/1/2011 12:00:00 AM
Firstpage
1313
Lastpage
1326
Abstract
Electrophotographic (EP) print banding, jitter, and ghosting artifacts are common sources of print quality degradation. Traditionally, the characterization of banding and jitter artifacts relies mainly on the assumption that the defect has either a horizontal or vertical orientation which permits the simple 1-D analysis of the defect profile. However, this assumption can easily be violated if a small amount of printer or scanner skew is introduced to the analyzed images. In some cases, the defect can inherently be neither vertical nor horizontal. In this case, unless the defect orientation has been accurately detected before analysis, the 1-D-based approaches could bias the estimation of the defect severity. In this paper, we present an approach to characterize the jitter and banding artifacts of unrestricted orientation using wavelet filtering and 2-D spectral analysis. We also present a new system for detecting and quantifying ghosting defects. It includes a design for a printed test pattern to emphasize the ghosting defect and facilitate further processing and analysis. Wavelet filtering and a template matching technique are used to detect the ghost location along and across the scanned test pattern. A new metric is developed to quantify ghosting based upon its contrast, shape, and location consistency. Our experimental results show that the proposed approaches provide objective measures that quantify EP defects with a rank ordering correlation coefficient of 0.8 to 0.98, as compared to the subjective assessment of print quality experts.
Keywords
electrophotography; filtering theory; image matching; jitter; wavelet transforms; 1D analysis; 2D spectral analysis; banding; electrophotographic print artifacts; ghosting defects; jitter; print quality degradation; rank ordering correlation coefficient; scanned test pattern; template matching technique; wavelet filtering; Calibration; Discrete Fourier transforms; Humans; Jitter; Printers; Spectral analysis; Wavelet transforms; Banding; defect; electrophotographic; ghosting; jitter; print quality; template matching; wavelets; Algorithms; Artifacts; Image Enhancement; Image Processing, Computer-Assisted;
fLanguage
English
Journal_Title
Image Processing, IEEE Transactions on
Publisher
ieee
ISSN
1057-7149
Type
jour
DOI
10.1109/TIP.2010.2092511
Filename
5635331
Link To Document