Title :
Impact of Device Parameters on Thermal Performance of High-Speed Oxide-Confined 850-nm VCSELs
Author :
Baveja, Prashant P. ; Kögel, Benjamin ; Westbergh, Petter ; Gustavsson, Johan S. ; Haglund, Åsa ; Maywar, Drew N. ; Agrawal, Govind P. ; Larsson, Anders
Author_Institution :
Inst. of Opt., Univ. of Rochester, Rochester, NY, USA
Abstract :
We study the impact of device parameters, such as inner-aperture diameter and cavity photon lifetime, on thermal rollover mechanisms in 850-nm, oxide-confined, vertical-cavity surface-emitting lasers (VCSELs) designed for high-speed operation. We perform measurements on four different VCSELs of different designs and use our empirical thermal model for calculating the power dissipated with increasing bias currents through various physical processes such as absorption within the cavity, carrier thermalization, carrier leakage, spontaneous carrier recombination, and Joule heating. When reducing the top mirror reflectivity to reduce internal optical absorption loss we find an increase of power dissipation due to carrier leakage. There is therefore a trade-off between the powers dissipated owing to optical absorption and carrier leakage in the sense that overcompensating for optical absorption enhances carrier leakage (and vice versa). We further find that carrier leakage places the ultimate limit on the thermal performance for this entire class of devices. Our analysis yields useful design optimization strategies for mitigating the impact of carrier leakage and should thereby prove useful for the performance enhancement of 850-nm, high-speed, oxide-confined VCSELs.
Keywords :
laser cavity resonators; laser mirrors; surface emitting lasers; Joule heating; VCSEL; carrier leakage; carrier thermalization; cavity photon lifetime; empirical thermal model; inner-aperture diameter; internal optical absorption loss; spontaneous carrier recombination; thermal performance; thermal rollover mechanisms; top mirror reflectivity; vertical-cavity surface-emitting lasers; wavelength 850 nm; Apertures; Cavity resonators; Performance evaluation; Photonics; Temperature dependence; Temperature measurement; Vertical cavity surface emitting lasers; Carrier leakage; photon lifetime; thermal effects; vertical cavity surface emitting lasers;
Journal_Title :
Quantum Electronics, IEEE Journal of
DOI :
10.1109/JQE.2011.2176554