DocumentCode :
1379626
Title :
Fixed-prefix encoding of the integers can be Huffman-optimal
Author :
Gutman, Michael
Author_Institution :
Codex Corp., Mansfield, MA, USA
Volume :
36
Issue :
4
fYear :
1990
fDate :
7/1/1990 12:00:00 AM
Firstpage :
936
Lastpage :
938
Abstract :
Various source coding schemes encode the set of integers using a binary representation of the integers to be encoded, prefixed by some information about the length of that representation. In the context of recency rank encoding, these can be regarded as attempts to assign codewords with lengths close to the logarithm of the integer to be encoded, or as attempts to construct a code for a distribution function Q(*) on the integers, where Q(k)=(1/k)/Σi(1/i), iI, and I is a finite set of positive integers to be encoded. It is shown that fixed-prefix encoding is equivalent to Huffman coding for the distribution Q(*)
Keywords :
encoding; Huffman coding; Huffman-optimal; fixed-prefix encoding; integers; recency rank encoding; source coding; Decoding; Distribution functions; Encoding; Frequency; Huffman coding; Source coding;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/18.53761
Filename :
53761
Link To Document :
بازگشت