Title :
Discovering frequent event patterns with multiple granularities in time sequences
Author :
Bettini, Claudio ; Wang, X. Sean ; Jajodia, Sushil ; Lin, Jia-Ling
Author_Institution :
Dept. of Inf. Sci., Milan Univ., Italy
Abstract :
An important usage of time sequences is to discover temporal patterns. The discovery process usually starts with a user specified skeleton, called an event structure, which consists of a number of variables representing events and temporal constraints among these variables; the goal of the discovery is to find temporal patterns, i.e., instantiations of the variables in the structure that appear frequently in the time sequence. The paper introduces event structures that have temporal constraints with multiple granularities, defines the pattern discovery problem with these structures, and studies effective algorithms to solve it. The basic components of the algorithms include timed automata with granularities (TAGs) and a number of heuristics. The TAGs are for testing whether a specific temporal pattern, called a candidate complex event type, appears frequently in a time sequence. Since there are often a huge number of candidate event types for a usual event structure, heuristics are presented aiming at reducing the number of candidate event types and reducing the time spent by the TAGs testing whether a candidate type does appear frequently in the sequence. These heuristics exploit the information provided by explicit and implicit temporal constraints with granularity in the given event structure. The paper also gives the results of an experiment to show the effectiveness of the heuristics on a real data set
Keywords :
deductive databases; finite automata; heuristic programming; knowledge acquisition; temporal databases; temporal logic; TAGs; candidate complex event type; event structure; frequent event pattern discovery; heuristics; implicit temporal constraints; instantiations; multiple granularities; pattern discovery problem; real data set; temporal constraints; temporal pattern; temporal pattern discovery; time sequence; time sequences; timed automata with granularities; user specified skeleton; Automata; Computer Society; Computer networks; Data mining; Frequency; Industrial plants; Information analysis; Skeleton; Testing; Transaction databases;
Journal_Title :
Knowledge and Data Engineering, IEEE Transactions on