DocumentCode
1398144
Title
Towards Human–Robot Teams: Model-Based Analysis of Human Decision Making in Two-Alternative Choice Tasks With Social Feedback
Author
Stewart, Andrew ; Cao, Ming ; Nedic, Andrea ; Tomlin, Damon ; Leonard, Naomi Ehrich
Volume
100
Issue
3
fYear
2012
fDate
3/1/2012 12:00:00 AM
Firstpage
751
Lastpage
775
Abstract
With a principled methodology for systematic design of human-robot decision-making teams as a motivating goal, we seek an analytic, model-based description of the influence of team and network design parameters on decision-making performance. Given that there are few reliably predictive models of human decision making, we consider the relatively well-understood two-alternative choice tasks from cognitive psychology, where individuals make sequential decisions with limited information, and we study a stochastic decision-making model, which has been successfully fitted to human behavioral and neural data for a range of such tasks. We use an extension of the model, fitted to experimental data from groups of humans performing the same task simultaneously and receiving feedback on the choices of others in the group. First, we show how the task and model can be regarded as a Markov process. Then, we derive analytically the steady-state probability distributions for decisions and performance as a function of model and design parameters such as the strength and path of the social feedback. Finally, we discuss application to human-robot team and network design and next steps with a multirobot testbed.
Keywords
Markov processes; decision making; human-robot interaction; multi-robot systems; statistical distributions; Markov process; cognitive psychology; human-robot decision-making teams; model-based analysis; multirobot testbed; network design parameters; social feedback; steady-state probability distributions; stochastic decision-making model; team design parameters; two-alternative choice tasks; Analytical models; Decision making; Human factors; Man machine systems; Mathematical model; Multiagent systems; Psychology; Robots; Decision making; human machine systems; multi-agent systems; psychology;
fLanguage
English
Journal_Title
Proceedings of the IEEE
Publisher
ieee
ISSN
0018-9219
Type
jour
DOI
10.1109/JPROC.2011.2173815
Filename
6104090
Link To Document