DocumentCode :
1403209
Title :
Optimally robust system identification of systems subject to amplitude-bounded stochastic disturbances
Author :
Hjalmarsson, Håkan
Author_Institution :
Dept. of Signals, Sensors & Syst., R. Inst. of Technol., Stockholm, Sweden
Volume :
43
Issue :
7
fYear :
1998
fDate :
7/1/1998 12:00:00 AM
Firstpage :
947
Lastpage :
953
Abstract :
In this paper it is shown that log cos(πx/(2C)) is the optimally robust criterion function for prediction error methods with respect to amplitude-bounded stochastic disturbances. This criterion function minimizes the maximum asymptotic covariance matrix of the parameter estimates for the family of innovations of the systems which are amplitude bounded by the constant C. Furthermore, the stochastic worst case performance of the estimate corresponding to the criterion function log cos(πx/(2C)) is better than the worst case performance of the least squares estimate even if the constant C is chosen larger than the actual amplitude bound on the innovations. In addition to its favorable properties in a stochastic setting, this criterion function also generates estimates which are unfalsified in a deterministic framework
Keywords :
covariance matrices; discrete time systems; linear systems; minimax techniques; parameter estimation; stochastic systems; SISO systems; asymptotic covariance matrix; discrete time systems; identification; linear time invariant systems; minimax technique; optimally robust criterion function; parameter estimation; prediction error method; robust estimation; stochastic disturbances; stochastic systems; Amplitude estimation; Covariance matrix; Minimax techniques; Noise robustness; Parameter estimation; Statistics; Stochastic processes; Stochastic systems; System identification; Technological innovation;
fLanguage :
English
Journal_Title :
Automatic Control, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9286
Type :
jour
DOI :
10.1109/9.701094
Filename :
701094
Link To Document :
بازگشت