DocumentCode :
1423124
Title :
A Control Strategy for Islanded Microgrids With DC-Link Voltage Control
Author :
Vandoorn, Tine L. ; Meersman, Bart ; Degroote, Lieven ; Renders, Bert ; Vandevelde, Lieven
Author_Institution :
Dept. of Electr. Energy, Ghent Univer sity, Ghent, Belgium
Volume :
26
Issue :
2
fYear :
2011
fDate :
4/1/2011 12:00:00 AM
Firstpage :
703
Lastpage :
713
Abstract :
New opportunities for optimally integrating the increasing number of distributed-generation (DG) units in the power system rise with the introduction of the microgrid. Most DG units are connected to the microgrid via a power-electronic inverter with dc link. Therefore, new control methods for these inverters need to be developed in order to exploit the DG units as effectively as possible in case of an islanded microgrid. In the literature, most control strategies are based on the conventional transmission grid control or depend on a communication infrastructure. In this paper, on the other hand, an alternative control strategy is proposed based on the specific characteristics of islanded low-voltage microgrids. The microgrid power is balanced by using a control strategy that modifies the set value of the rms microgrid voltage at the inverter ac side as a function of the dc-link voltage. In case a certain voltage, which is determined by a constant-power band, is surpassed, this control strategy is combined with P/V -droop control. This droop controller changes the output power of the DG unit and its possible storage devices as a function of the grid voltage. In this way, voltage-limit violation is avoided. The constant-power band depends on the characteristics of the generator to avoid frequent changes of the power of certain DG units. In this paper, it is concluded that the new control method shows good results in power sharing, transient issues, and stability. This is achieved without interunit communication, which is beneficial concerning reliability issues, and an optimized integration of the renewable energy sources in the microgrid is obtained.
Keywords :
distributed power generation; invertors; power distribution reliability; power grids; voltage control; DC-link voltage control; DG unit; P-V-droop control; RMS microgrid voltage; communication infrastructure; constant-power band; distributed-generation unit; islanded microgrid control strategy; power system rise; power-electronic inverter; reliability issue; renewable energy source; voltage-limit violation; $P/V$ -droop; DC-link voltage control; distributed generation; microgrid; power sharing; voltage-source inverter;
fLanguage :
English
Journal_Title :
Power Delivery, IEEE Transactions on
Publisher :
ieee
ISSN :
0885-8977
Type :
jour
DOI :
10.1109/TPWRD.2010.2095044
Filename :
5685286
Link To Document :
بازگشت