Title :
The Group Lasso for Stable Recovery of Block-Sparse Signal Representations
Author :
Lv, Xiaolei ; Bi, Guoan ; Wan, Chunru
Author_Institution :
Div. of Inf. Eng., Nanyang Technol. Univ., Singapore, Singapore
fDate :
4/1/2011 12:00:00 AM
Abstract :
Group Lasso is a mixed l1/l2-regularization method for a block-wise sparse model that has attracted a lot of interests in statistics, machine learning, and data mining. This paper establishes the possibility of stably recovering original signals from the noisy data using the adaptive group Lasso with a combination of sufficient block-sparsity and favorable block structure of the overcomplete dictionary. The corresponding theoretical results about the solution uniqueness, support recovery and representation error bound are derived based on the properties of block-coherence and subcoherence. Compared with the theoretical results on the parametrized quadratic program of conventional sparse representation, our stability results are more general. A comparison with block-based orthogonal greedy algorithm is also presented. Numerical experiments demonstrate the validity and correctness of theoretical derivation and also show that in case of noisy situation, the adaptive group Lasso has a better reconstruction performance than the quadratic program approach if the observed sparse signals have a natural block structure.
Keywords :
greedy algorithms; group theory; quadratic programming; signal representation; block-coherence; block-sparse signal representation; group Lasso; l1/l2-regularization method; orthogonal greedy algorithm; parametrized quadratic program; stable recovery; subcoherence; Block-coherence; group Lasso; orthogonal greedy algorithm; sparse representation;
Journal_Title :
Signal Processing, IEEE Transactions on
DOI :
10.1109/TSP.2011.2105478