• DocumentCode
    142415
  • Title

    GA optimization of ladder-structured GOBF models

  • Author

    Barbosa Machado, Jeremias

  • Author_Institution
    Fed. Univ. of Itajuba, Itajuba, Brazil
  • fYear
    2014
  • fDate
    March 31 2014-April 3 2014
  • Firstpage
    396
  • Lastpage
    401
  • Abstract
    A new technique for systems identification using ladder-structured generalized orthonormal basis function model is presented. In this approach the model poles and the number of functions are optimized using a genetic algorithm. A fitness function based on the Akaike information criterion considering model accuracy and model parsimony provides optimal number of functions and poles of the system model. Simulated and a real examples illustrate the performance of the proposed technique.
  • Keywords
    genetic algorithms; identification; Akaike information criterion; GA optimization; genetic algorithm; ladder-structured GOBF models; ladder-structured generalized orthonormal basis function model; systems identification; Biological cells; Data models; Genetic algorithms; Mathematical model; Optimization; Sociology; Statistics;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Systems Conference (SysCon), 2014 8th Annual IEEE
  • Conference_Location
    Ottawa, ON
  • Print_ISBN
    978-1-4799-2087-7
  • Type

    conf

  • DOI
    10.1109/SysCon.2014.6819287
  • Filename
    6819287