DocumentCode :
1427533
Title :
L-Band Reflectivity of a Furrowed Soil Surface
Author :
Völksch, Ingo ; Schwank, Mike ; Mätzler, Christian
Author_Institution :
WSL Swiss Fed. Inst. for Forest, Birmensdorf, Switzerland
Volume :
49
Issue :
6
fYear :
2011
fDate :
6/1/2011 12:00:00 AM
Firstpage :
1957
Lastpage :
1966
Abstract :
In a combined experimental and model study, we investigated the thermal L-band signatures of a sandy soil with periodic topography (furrows) with dimensions close to the observation wavelength of 21 cm. Measurements were carried out with a radiometer mounted on a tower and aimed at a soil box with an artificially prepared furrowed soil surface. Corresponding reflectivities were derived from brightness temperature measurements performed under dry and moist conditions, with the furrow direction either along or perpendicular to the plane of incidence. Results showed that the furrows had a pronounced effect on the reflectivity, depending on the polarization of the observed radiance, the direction of the furrows, and the soil moisture. A physical reflectivity model for dielectric periodic surfaces was used to explain the soil reflectivities measured for the different furrow directions and soil-water contents. Using this model improved the agreement between the measured and modeled reflectivities considerably compared to the Fresnel reflectivities. The observed dependence of soil reflectivity on furrow orientation and soil moisture could be reproduced by the reflectivity model. The quantitative agreement with the observed reflectivities was further improved by using a simple empirical approach to consider the small-scale heterogeneity of the top soil layer.
Keywords :
electromagnetic wave scattering; moisture; radiometry; remote sensing by radar; soil; topography (Earth); Fresnel reflectivity; brightness temperature measurements; dielectric periodic surfaces; dry conditions; furrow direction; furrowed soil surface L-band reflectivity; incidence plane; moist conditions; observed radiance polarization; periodic topography; physical reflectivity model; radiometer; sandy soil; soil moisture; thermal L-band signatures; top soil layer small scale heterogeneity; wavelength 21 cm; Antenna measurements; Mathematical model; Moisture measurement; Soil; Soil measurements; Surface topography; Temperature measurement; Electromagnetic scattering by periodic structures; electromagnetic scattering by rough surfaces; microwave radiometry; permittivity;
fLanguage :
English
Journal_Title :
Geoscience and Remote Sensing, IEEE Transactions on
Publisher :
ieee
ISSN :
0196-2892
Type :
jour
DOI :
10.1109/TGRS.2010.2091720
Filename :
5688320
Link To Document :
بازگشت