Title :
Optical and Electrical Diagnostics of the Effects of Conductivity on Liquid Phase Electrical Discharge
Author :
Shih, Kai-Yuan ; Locke, Bruce R.
Author_Institution :
Dept. of Chem. & Biomed. Eng., Florida State Univ., Tallahassee, FL, USA
fDate :
3/1/2011 12:00:00 AM
Abstract :
The influence of solution conductivity on liquid phase pulsed electrical discharge was investigated by optical emission spectroscopy in a reactor with point-to-plane electrode geometry. The emission intensities of hydroxyl (OH) radical, hydrogen (H) radical, and oxygen (O) radical were measured using an emission intensity calibration method which used argon gas as a chemical actinometer. Control experiments showed that the addition of argon (Ar) bubbles did not disturb the electrical discharge. It was also found that the Ar emission peak at 750 nm is linearly related to the peaks of the other major species of interest (OH, H, and O) and that the slopes of these lines depend upon the solution conductivities. Therefore, the calibration method allows comparison of the radical generation rates in solutions of different conductivity. Hydrogen (H2), oxygen (O2), and hydrogen peroxide (H2O2) were measured using gas chromatography and spectrophotometric methods. The results showed that OH radicals and H2O2 decreased with increasing solution conductivity consistently with previous results. The intensities of O and H radicals and the generation rates of H2 and O2 were found to have extrema values at a conductivity of 150 μS/cm, and these results in combination with the electrical diagnostics (current waveform and overall power input) and images of the discharge channels imply changes in discharge properties at this conductivity due partly to power input changes from the spark gap. This work clearly demonstrates the close coupling of radical and molecular species formation in liquid phase electrical discharge.
Keywords :
discharges (electric); free radicals; luminescence; plasma diagnostics; plasma transport processes; water; Ar emission peak; H2O; argon bubble addition; chemical actinometer; control experiments; discharge channel images; discharge properties; electrical diagnostic; emission intensity calibration method; gas chromatography; hydrogen peroxide; hydrogen radical intensities; hydroxyl radical; liquid phase pulsed electrical discharge; optical diagnostic; optical emission spectroscopy; oxygen radical intensities; point-to-plane electrode geometry; power input changes; radical generation rates; solution conductivity; spark gap; spectrophotometric methods; Liquid water; optical emission spectroscopy; pulsed electrical discharge; radical generation;
Journal_Title :
Plasma Science, IEEE Transactions on
DOI :
10.1109/TPS.2010.2098052