• DocumentCode
    1451111
  • Title

    Visual Odometry : Part II: Matching, Robustness, Optimization, and Applications

  • Author

    Fraundorfer, Friedrich ; Scaramuzza, Davide

  • Author_Institution
    ETH Zurich, Zurich, Switzerland
  • Volume
    19
  • Issue
    2
  • fYear
    2012
  • fDate
    6/1/2012 12:00:00 AM
  • Firstpage
    78
  • Lastpage
    90
  • Abstract
    Part II of the tutorial has summarized the remaining building blocks of the VO pipeline: specifically, how to detect and match salient and repeatable features across frames and robust estimation in the presence of outliers and bundle adjustment. In addition, error propagation, applications, and links to publicly available code are included. VO is a well understood and established part of robotics. VO has reached a maturity that has allowed us to successfully use it for certain classes of applications: space, ground, aerial, and underwater. In the presence of loop closures, VO can be used as a building block for a complete SLAM algorithm to reduce motion drift. Challenges that still remain are to develop and demonstrate large-scale and long-term implementations, such as driving autonomous cars for hundreds of miles. Such systems have recently been demonstrated using Lidar and Radar sensors [86]. However, for VO to be used in such systems, technical issues regarding robustness and, especially, long-term stability have to be resolved. Eventually, VO has the potential to replace Lidar-based systems for egomotion estimation, which are currently leading the state of the art in accuracy, robustness, and reliability. VO offers a cheaper and mechanically easier-to-manufacture solution for egomotion estimation, while, additionally, being fully passive. Furthermore, the ongoing miniaturization of digital cameras offers the possibility to develop smaller and smaller robotic systems capable of ego-motion estimation.
  • Keywords
    SLAM (robots); cameras; distance measurement; motion estimation; robot vision; Lidar-based system; SLAM algorithm; VO pipeline; aerial application; digital camera; driving autonomous car; easier-to-manufacture solution; egomotion estimation; error propagation; ground application; loop closures; motion drift; radar sensor; robotic system; robust estimation; space application; underwater application; visual odometry; Cameras; Computer vision; Estimation; Feature extraction; Odemtry; Optimization; Robust control; Tutorials; VIsualization;
  • fLanguage
    English
  • Journal_Title
    Robotics & Automation Magazine, IEEE
  • Publisher
    ieee
  • ISSN
    1070-9932
  • Type

    jour

  • DOI
    10.1109/MRA.2012.2182810
  • Filename
    6153423