DocumentCode :
1451542
Title :
Quantum factoring, discrete logarithms, and the hidden subgroup problem
Author :
Jozsa, Richard
Author_Institution :
Dept. of Comput. Sci., Bristol Univ., UK
Volume :
3
Issue :
2
fYear :
2001
Firstpage :
34
Lastpage :
43
Abstract :
Among the most remarkable successes of quantum computation are Shor´s efficient quantum algorithms for the computational tasks of integer factorization and the evaluation of discrete logarithms. This article reviews the essential ingredients of these algorithms and draws out the unifying generalization of the so-called hidden subgroup problem
Keywords :
algorithm theory; quantum computing; discrete logarithms; efficient quantum algorithms; hidden subgroup problem; integer factorization; quantum computation; quantum factoring; Computer displays; Discrete Fourier transforms; Equations; Error probability; Fourier transforms; Modular construction; Polynomials; Quantum computing; Registers; Zinc;
fLanguage :
English
Journal_Title :
Computing in Science & Engineering
Publisher :
ieee
ISSN :
1521-9615
Type :
jour
DOI :
10.1109/5992.909000
Filename :
909000
Link To Document :
بازگشت