DocumentCode :
1455709
Title :
Optimal “focusing” for low resolution ScanSAR
Author :
Monti-Guarnieri, Andrea ; Guccione, Pietro
Author_Institution :
Dept. di Elettronica e Inf., Politecnico di Milano, Italy
Volume :
39
Issue :
3
fYear :
2001
fDate :
3/1/2001 12:00:00 AM
Firstpage :
479
Lastpage :
491
Abstract :
Deals with the focusing of low resolution ScanSAR data, for both detected amplitude images and interferometric applications. The SAR reference is exploited to achieve ScanSAR focusing in conventional techniques. Such techniques provide quite effective compensation of the azimuth antenna pattern (e.g. no scalloping) when the azimuth time-bandwidth product of the ScanSAR echo is large, but fail to do so as the burst shortens, being reduced to an ineffective weighting of the output. The result is an azimuth varying distortion of the focused impulse responses, a distortion that is partly compensated for in the multilook average (not available for interferometric applications) at the price of a reduction in the processed Doppler bandwidth. This paper proposes quite a different approach. A set of short kernels, each suitable for “focusing” at a specific azimuth bin, has been optimized to reconstruct source reflectivity in the minimum mean square error sense. That pseudoinversion converges to the “conventional” focusing when the burst extent is large and for short bursts, edge effects are accounted for. These azimuth-varying kernels can be suitably tuned to meet constraints in the resolution/sidelobes trade-off and have proved capable of providing fairly undistorted output and fine resolution. They better exploit the available Doppler bandwidth, maximizing the number of looks and the interferometric quality. A decomposition is suggested that implements the inverse operator as a fast preprocessing to be followed by a conventional ScanSAR processor
Keywords :
focusing; remote sensing by radar; synthetic aperture radar; Doppler bandwidth,; SAR reference; amplitude images; azimuth antenna pattern; azimuth time-bandwidth product; azimuth varying distortion; azimuth-varying kernels; burst extent; edge effects; interferometric applications; inverse operator; low resolution ScanSAR data; minimum mean square error; optimal focusing; processed Doppler bandwidth.; pseudoinversion; resolution/sidelobes trade-off; source reflectivity; Aperture antennas; Azimuth; Bandwidth; Focusing; Image reconstruction; Image resolution; Kernel; Mean square error methods; Radar antennas; Reflectivity;
fLanguage :
English
Journal_Title :
Geoscience and Remote Sensing, IEEE Transactions on
Publisher :
ieee
ISSN :
0196-2892
Type :
jour
DOI :
10.1109/36.911107
Filename :
911107
Link To Document :
بازگشت