DocumentCode :
1462742
Title :
Stochastic Precoding for MISO Interference Channels with Channel Mean Feedback
Author :
Ding, Minhua ; Zhang, Q.T.
Author_Institution :
Dept. of Electron. Eng., City Univ. of Hong Kong, Kowloon, China
Volume :
60
Issue :
4
fYear :
2012
fDate :
4/1/2012 12:00:00 AM
Firstpage :
1082
Lastpage :
1090
Abstract :
This work considers linear precoding strategies for multiple-input single-out (MISO) interference channels with channel mean feedback at transmitters, where the interference at each receiver is treated as additive noise. The challenge here is that previous precoder designs with perfect channel state information (CSI) at transmitters do not apply and new approaches are required. Based on the Laplace transform order, an altruistic non-equilibrium strategy, i.e., the stochastic zero forcing, is first proposed under practical assumptions, generalizing the traditional zero forcing which requires perfect CSI. Interestingly, the precoding matrices here are all rank-one beamformers as in the traditional zero forcing. The competitive use of the common physical media in MISO interference channels is also formulated as a strategic noncooperative game. In contrast to the perfect CSI case with a unique rank-one Nash equilibrium, with channel mean feedback, the Nash equilibria here are not necessarily rank-one in general. Nevertheless, when achieved by the rank-one beamforming, the equilibrium is unique and convenient for implementation. Accordingly, the condition for beamforming to achieve the equilibrium is derived. Comparisons of the above two strategies reveal no overall dominance of one over the other, thereby establishing stochastic zero forcing as an alternative to the Nash equilibrium designs.
Keywords :
Laplace transforms; game theory; linear codes; precoding; radio receivers; radio transmitters; radiofrequency interference; stochastic processes; wireless channels; Laplace transform order; MISO interference channel; Nash equilibria; additive noise; altruistic nonequilibrium strategy; channel mean feedback; channel state information; linear precoding; multiple-input single-out interference channel; precoder design; precoding matrix; rank-one beamformer; receiver; stochastic precoding; stochastic zero forcing; strategic noncooperative game; transmitter; Interference channels; Nash equilibrium; Receivers; Stochastic processes; Transmitters; Vectors; Interference channels; Laplace transform order; Nash equilibrium; multiple-input single-output (MISO); stochastic orders; stochastic zero forcing;
fLanguage :
English
Journal_Title :
Communications, IEEE Transactions on
Publisher :
ieee
ISSN :
0090-6778
Type :
jour
DOI :
10.1109/TCOMM.2012.022912.110277
Filename :
6164085
Link To Document :
بازگشت