DocumentCode :
1473365
Title :
Application of simulated annealing fuzzy model tuning to umbilical cord acid-base interpretation
Author :
Garibaldi, Jonathan M. ; Ifeachor, Emmanuel C.
Author_Institution :
Sch. of Electron. Commun. & Electr. Eng., Plymouth Univ., UK
Volume :
7
Issue :
1
fYear :
1999
fDate :
2/1/1999 12:00:00 AM
Firstpage :
72
Lastpage :
84
Abstract :
Fuzzy logic and fuzzy set theory provide an important framework for representing and managing imprecision and uncertainty in medical expert systems, but the need remains to optimize such systems to enhance performance. The paper presents a general technique for optimizing fuzzy models in fuzzy expert systems (FESs) by simulated annealing (SA) and N-dimensional hill climbing simplex method. The application of the technique to a FES for the interpretation of the acid-base balance of blood in the umbilical cord of newborn infants is presented. The Spearman rank order correlation statistic was used to assess and to compare the performance of a commercially available crisp expert system, an initial FES, and a tuned FES with experienced clinicians. Results showed that without tuning, the performance of the crisp system was significantly better (correlation of 0.80) than the FES (correlation of 0.67). The performance of the tuned FES was better than the crisp system and effectively indistinguishable from the clinicians (correlation of 0.93) on training data and was the best of the expert systems on validation data. Unlike most applications of fuzzy logic where all fuzzy sets have normalized heights of unity, in this application it was found that a reduction in the height of some fuzzy sets was effective in enhancing performance. This suggests that the height of fuzzy sets may be a generally useful parameter in tuning FESs
Keywords :
fuzzy logic; fuzzy set theory; medical expert systems; simulated annealing; uncertainty handling; N-dimensional hill climbing simplex method; Spearman rank order correlation statistic; acid-base balance; blood; crisp expert system; imprecision; medical expert systems; newborn infants; simulated annealing fuzzy model; umbilical cord; uncertainty; Expert systems; Fuzzy logic; Fuzzy set theory; Fuzzy sets; Hybrid intelligent systems; Medical expert systems; Medical simulation; Pediatrics; Simulated annealing; Uncertainty;
fLanguage :
English
Journal_Title :
Fuzzy Systems, IEEE Transactions on
Publisher :
ieee
ISSN :
1063-6706
Type :
jour
DOI :
10.1109/91.746314
Filename :
746314
Link To Document :
بازگشت