Title :
Neural network observers for on-line tracking of synchronous generator parameters
Author :
Pillutla, S. ; Keyhani, A. ; Kamwa, I.
Author_Institution :
Dept. of Electr. Eng., Ohio State Univ., Columbus, OH, USA
fDate :
3/1/1999 12:00:00 AM
Abstract :
This paper presents a methodology for implementing artificial neural network (ANN) observers in estimating and tracking synchronous generator parameters from time-domain online disturbance measurements. Data for training the neural network observers are obtained through offline simulations of a synchronous generator operating in a one-machine-infinite-bus environment. Nominal values of parameters are used in the machine model. After training, the ANN observer is tested with simulated online measurements to provide estimates of unmeasurable rotor body currents and in tracking simulated changes in machine parameters
Keywords :
electric machine analysis computing; learning (artificial intelligence); machine theory; neural nets; observers; parameter estimation; rotors; synchronous generators; tracking; neural network observers; one-machine-infinite-bus environment; online tracking; simulated parameter changes; synchronous generator parameters; time-domain online disturbance measurements; training data; unmeasurable rotor body currents; Artificial neural networks; Circuit faults; Current measurement; Magnetic field measurement; Neural networks; Observers; Parameter estimation; Rotors; State estimation; Synchronous generators;
Journal_Title :
Energy Conversion, IEEE Transactions on