DocumentCode :
148178
Title :
Optimal decoding of convolutional-coded physical-layer network coding
Author :
Qing Yang ; Soung Chang Liew
Author_Institution :
Dept. of Inf. Eng., Chinese Univ. of Hong Kong, Hong Kong, China
fYear :
2014
fDate :
6-9 April 2014
Firstpage :
364
Lastpage :
369
Abstract :
This paper investigates the decoding process of convolutional-coded physical-layer network coding (PNC) systems. Specifically, we put forth a joint channel-decoding network coding (Jt-CNC) algorithm, based on belief propagation (BP), for convolutional-coded PNC. Previously proposed XOR and channel decoding (XOR-CD) algorithm and reduced-state Viterbi algorithm are not optimal. Our Jt-CNC decoder is BER-optimal with feasible computational complexity. Simulations show that Jt-CNC outperforms XOR-CD and reduced-state Viterbi by 2dB. Furthermore, Jt-CNC is more resilient to phase offset.
Keywords :
channel coding; computational complexity; convolutional codes; decoding; maximum likelihood estimation; network coding; phase coding; BER-optimal; BP; Jt-CNC algorithm; PNC; XOR-CD algorithm; belief propagation; channel decoding algorithm; computational complexity; convolutional-coded PNC; convolutional-coded physical-layer network coding; gain 2 dB; joint channel-decoding network coding algorithm; optimal decoding process; reduced-state Viterbi algorithm; Complexity theory; Convolution; Convolutional codes; Decoding; Network coding; Relays; Viterbi algorithm;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Wireless Communications and Networking Conference (WCNC), 2014 IEEE
Conference_Location :
Istanbul
Type :
conf
DOI :
10.1109/WCNC.2014.6952035
Filename :
6952035
Link To Document :
بازگشت