• DocumentCode
    1489990
  • Title

    The unbiased gradient type LS algorithm for adaptive spectrum estimation

  • Author

    Kim, Daehoon ; Alexander, Winser E.

  • Author_Institution
    Mayo Clinic, Rochester, MN, USA
  • Volume
    37
  • Issue
    3
  • fYear
    1990
  • fDate
    3/1/1990 12:00:00 AM
  • Firstpage
    416
  • Lastpage
    420
  • Abstract
    A gradient-type-least-squares (LS) algorithm for adaptive implementation of Pisarenko´s method is presented. The algorithm, which uses the Lagrange multiplier technique for parameter updating, has faster convergence and improved tracking capability when compared to a least-mean-squares-type algorithm. Moreover, since the gradient-type LS algorithm does not use an approximation for deriving the updated weight vector, tracking errors in the transient region are smaller than with Reddy´s LS algorithm. Convergence analysis of the gradient-type LS algorithm in the vicinity of a stationary point shows that it is unbiased
  • Keywords
    convergence of numerical methods; parameter estimation; signal processing; spectral analysis; LS algorithm; Lagrange multiplier technique; Pisarenko´s method; adaptive spectrum estimation; convergence; least squares algorithm; parameter updating; tracking capability; transient region; unbiased gradient type; updated weight vector; Approximation algorithms; Biomedical signal processing; Convergence; Frequency estimation; Lagrangian functions; Radar tracking; Sensor arrays; Signal processing algorithms; Spectral analysis; White noise;
  • fLanguage
    English
  • Journal_Title
    Circuits and Systems, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0098-4094
  • Type

    jour

  • DOI
    10.1109/31.52735
  • Filename
    52735