• DocumentCode
    1490880
  • Title

    Generalizing Caratheodory´s uniqueness of harmonic parameterization to N dimensions

  • Author

    Sidiropoulos, Nicholas D.

  • Author_Institution
    Dept. of Electr. & Comput. Eng., Minnesota Univ., Minneapolis, MN, USA
  • Volume
    47
  • Issue
    4
  • fYear
    2001
  • fDate
    5/1/2001 12:00:00 AM
  • Firstpage
    1687
  • Lastpage
    1690
  • Abstract
    Consider a sum of F exponentials in N dimensions, and let In be the number of equispaced samples taken along the nth dimension. It is shown that if the frequencies or decays along every dimension are distinct and Σn=1N In ⩾2F+(N-1), then the parameterization in terms of frequencies, decays, amplitudes, and phases is unique. The result can be viewed as generalizing a classic result of Caratheodory to N dimensions. The proof relies on a recent result regarding the uniqueness of low-rank decomposition of N-way arrays
  • Keywords
    harmonic analysis; multidimensional signal processing; signal sampling; spectral analysis; F exponentials; N dimensions; N-way arrays; PARAFAC; amplitudes; decays; equispaced samples; frequencies; generalizing Caratheodory´s uniqueness; harmonic parameterization; low-rank decomposition; multidimensional harmonic retrieval; multiway analysis; phases; spectral analysis; Closed-form solution; Delay estimation; Frequency estimation; Harmonic analysis; Multidimensional signal processing; Random processes; Signal processing; Signal processing algorithms; Spectral analysis; Stochastic processes;
  • fLanguage
    English
  • Journal_Title
    Information Theory, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0018-9448
  • Type

    jour

  • DOI
    10.1109/18.923759
  • Filename
    923759