• DocumentCode
    14914
  • Title

    Temporal Decorrelation-Robust SAR Tomography

  • Author

    Lombardini, Fabrizio ; Cai, Fuxi

  • Author_Institution
    Dipt. di Ing. dell´Inf., Univ. of Pisa, Pisa, Italy
  • Volume
    52
  • Issue
    9
  • fYear
    2014
  • fDate
    Sept. 2014
  • Firstpage
    5412
  • Lastpage
    5421
  • Abstract
    Much interest is continuing to grow in advanced interferometric synthetic aperture radar (SAR) methods for full 3-D imaging, particularly of volumetric forest scatterers. Multibaseline (MB) SAR tomographic elevation beam forming, i.e., spatial spectral estimation, is a promising technique in this framework. In this paper, the important effect of temporal decorrelation during the repeat-pass MB acquisition is tackled, analyzing the impact on superresolution (MUSIC) tomography with limited sparse data. Moreover, new tomographic methods robust to temporal decorrelation phenomena are proposed, exploiting the advanced differential tomography concept that produces “space-time” signatures of scattering dynamics in the SAR cell. To this aim, a 2-D version of MUSIC and a generalized MUSIC method matched to nonline spectra are applied to decouple the nuisance temporal signal components in the spatial spectral estimation. Simulated analyses are reported for different geometrical and temporal parameters, showing that the new concept of restoring tomographic performance in temporal decorrelating forest scenarios through differential tomography is promising.
  • Keywords
    array signal processing; decorrelation; forestry; image matching; image resolution; image restoration; optical tomography; radar imaging; synthetic aperture radar; 2D MUSIC version; 3D imaging; MB SAR tomographic elevation beam forming; SAR; interferometric synthetic aperture radar method; multibase-line SAR tomographic elevation beam forming; nuisance temporal signal component; repeat-pass MB acquisition; space-time signature; spatial spectral estimation; superresolution tomography; temporal decorrelation-robust SAR tomography; volumetric forest scattering dynamic; Decorrelation; Estimation; Frequency estimation; Multiple signal classification; Synthetic aperture radar; Tomography; Decorrelation; electromagnetic tomography; multidimensional signal processing; radar interferometry; spectral analysis; synthetic aperture radar (SAR);
  • fLanguage
    English
  • Journal_Title
    Geoscience and Remote Sensing, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0196-2892
  • Type

    jour

  • DOI
    10.1109/TGRS.2013.2288689
  • Filename
    6679227