Title :
Reduction of fuzzy rule base via singular value decomposition
Author :
Yam, Yeung ; Baranyi, Peter ; Yang, Chi-Tin
Author_Institution :
Dept. of Mech. & Aumat. Eng., Chinese Univ. of Hong Kong, Shatin, Hong Kong
fDate :
4/1/1999 12:00:00 AM
Abstract :
Introduces a singular value-based method for reducing a given fuzzy rule set. The method conducts singular value decomposition of the rule consequents and generates certain linear combinations of the original membership functions to form new ones for the reduced set. The present work characterizes membership functions by the conditions of sum normalization (SN), nonnegativeness (NN), and normality (NO). Algorithms to preserve the SN and NN conditions in the new membership functions are presented. Preservation of the NO condition relates to a high-dimensional convex hull problem and is not always feasible in which case a closed-to-NO solution may be sought. The proposed method is applicable regardless of the adopted inference paradigms. With product-sum-gravity inference and singleton support fuzzy rule base, output errors between the full and reduced fuzzy set are bounded by the sum of the discarded singular values. The work discusses three specific applications of fuzzy reduction: fuzzy rule base with singleton support, fuzzy rule base with nonsingleton support (which includes the case of missing rules), and the Takagi-Sugeno-Kang (TSK) model. Numerical examples are presented to illustrate the reduction process
Keywords :
fuzzy logic; fuzzy set theory; fuzzy systems; inference mechanisms; reduced order systems; singular value decomposition; Takagi-Sugeno-Kang model; fuzzy rule base; fuzzy rule set; high-dimensional convex hull problem; membership functions; nonnegativeness; nonsingleton support; normality; product-sum-gravity inference; rule consequents; singleton support fuzzy rule base; singular value decomposition; sum normalization; Automation; Fuzzy control; Fuzzy sets; Fuzzy systems; Helium; Inference algorithms; Neural networks; Reduced order systems; Singular value decomposition; Tin;
Journal_Title :
Fuzzy Systems, IEEE Transactions on