• DocumentCode
    1502255
  • Title

    On some cosets of the first-order Reed-Muller code with high minimum weight

  • Author

    Fontaine, Caroline

  • Author_Institution
    Inst. Nat. de Recherche en Inf. et Autom., Le Chesnay, France
  • Volume
    45
  • Issue
    4
  • fYear
    1999
  • fDate
    5/1/1999 12:00:00 AM
  • Firstpage
    1237
  • Lastpage
    1243
  • Abstract
    We study a family of particular cosets of the first-order Reed-Muller code R(1,m): those generated by special codewords, the idempotents. Thus we obtain new maximal weight distributions of cosets of R(1,7) and 84 distinct almost maximal weight distributions of cosets of R(1,9), that is, with minimum weight 240. This leads to crypotographic applications in the context of stream ciphers
  • Keywords
    Reed-Muller codes; binary codes; cryptography; cyclic codes; binary codes; codewords; cosets; crypotographic applications; cyclic code; first-order Reed-Muller code; high minimum weight; idempotents; maximal weight distributions; stream ciphers; Algebra; Boolean functions; Codes; Cryptography; Galois fields; Information theory; Terminology;
  • fLanguage
    English
  • Journal_Title
    Information Theory, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0018-9448
  • Type

    jour

  • DOI
    10.1109/18.761276
  • Filename
    761276