DocumentCode :
1519526
Title :
Rank-one LMIs and Lyapunov´s inequality
Author :
Henrion, Didier ; Meinsma, Gjerrit
Author_Institution :
Lab. d´´Autom. et d´´Anal. des Syst., CNRS, Toulouse, France
Volume :
46
Issue :
8
fYear :
2001
fDate :
8/1/2001 12:00:00 AM
Firstpage :
1285
Lastpage :
1288
Abstract :
We describe a new proof of the well-known Lyapunov´s matrix inequality about the location of the eigenvalues of a matrix in some region of the complex plane. The proof makes use of standard facts from quadratic and semidefinite programming. Links are established between the Lyapunov matrix, rank-one linear matrix inequalities (LMI), and the Lagrange multiplier arising in duality theory
Keywords :
Lyapunov matrix equations; duality (mathematics); eigenvalues and eigenfunctions; quadratic programming; Lagrange multiplier; Lyapunov matrix inequality; duality theory; matrix eigenvalues; quadratic programming; rank-one LMI; rank-one linear matrix inequalities; semidefinite programming; Automation; Conformal mapping; Eigenvalues and eigenfunctions; Information theory; Lagrangian functions; Linear matrix inequalities; Linear systems; Mathematics; Quadratic programming; Stability;
fLanguage :
English
Journal_Title :
Automatic Control, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9286
Type :
jour
DOI :
10.1109/9.940935
Filename :
940935
Link To Document :
بازگشت