Title :
Verification Decoding of High-Rate LDPC Codes With Applications in Compressed Sensing
Author :
Zhang, Fan ; Pfister, Henry D.
Author_Institution :
Dept. of Electr. & Comput. Eng., Texas A&M Univ., College Station, TX, USA
Abstract :
This paper considers the performance of (j, k)-regular low-density parity-check (LDPC) codes with message-passing (MP) decoding algorithms in the high-rate regime. In particular, we derive the high-rate scaling law for MP decoding of LDPC codes on the binary erasure channel (BEC) and the q-ary symmetric channel (q-SC). For the BEC and a fixed j, the density evolution (DE) threshold of iterative decoding scales like Θ(k-1) and the critical stopping ratio scales like Θ(k-j/(j-2)). For the q-SC and a fixed j, the DE threshold of verification decoding depends on the details of the decoder and scales like Θ(k-1) for one decoder. Using the fact that coding over large finite alphabets is very similar to coding over the real numbers, the analysis of verification decoding is also extended to the compressed sensing (CS) of strictly sparse signals. A DE-based approach is used to analyze the CS systems with randomized-reconstruction guarantees. This leads to the result that strictly sparse signals can be reconstructed efficiently with high probability using a constant oversampling ratio (i.e., when the number of measurements scales linearly with the sparsity of the signal). A stopping-set-based approach is also used to get stronger (e.g., uniform-in-probability) reconstruction guarantees.
Keywords :
codecs; compressed sensing; iterative decoding; parity check codes; probability; signal reconstruction; BEC; CS systems; DE threshold; DE-based approach; binary erasure channel; compressed sensing; critical stopping ratio; decoder; density evolution; high-rate LDPC codes; high-rate regime; iterative decoding; low-density parity-check codes; message-passing decoding algorithms; oversampling ratio; q-SC; q-ary symmetric channel; randomized-reconstruction guarantees; sparse signals; uniform-in-probability; verification decoding; Algorithm design and analysis; Decoding; Encoding; Iterative decoding; Noise measurement; Sparse matrices; $q$-ary symmetric channel; Compressed sensing (CS); low-density parity-check (LDPC) codes; stopping sets; verification decoding;
Journal_Title :
Information Theory, IEEE Transactions on
DOI :
10.1109/TIT.2012.2201344