• DocumentCode
    1534045
  • Title

    3-D perception and modeling

  • Author

    Birk, Andreas ; Vaskevicius, Narunas ; Pathak, Kaustubh ; Schwertfeger, Sören ; Poppinga, Jann ; Buelow, Henning

  • Author_Institution
    Jacobs Univ., Bremen, Germany
  • Volume
    16
  • Issue
    4
  • fYear
    2009
  • fDate
    12/1/2009 12:00:00 AM
  • Firstpage
    53
  • Lastpage
    60
  • Abstract
    In the context of the 2008 Lunar Robotics Challenge (LRC) of the European Space Agency (ESA), the Jacobs Robotics team investigated three-dimensional (3-D) perception and modeling as an important basis of autonomy in unstructured domains. Concretely, the efficient modeling of the terrain via a 3D laser range finder (LRF) is addressed. The underlying fast extraction of planar surface patches can be used to improve situational awareness of an operator or for path planning. 3D perception and modeling is an important basis for mobile robot operations in planetary exploration scenarios as it supports good situation awareness for motion level teleoperation as well as higher level intelligent autonomous functions. It is hence desirable to get long-range 3D data with high resolution, large field of view, and very fast update rates. 3D LRF have a high potential in this respect. In addition, 3D LRF can operate under conditions where standard vision based methods fail, e.g., under extreme light conditions. However, it is nontrivial to transmit the huge amount of data delivered by a 3D LRF to an operator station or to use this point cloud data as basis for higher level intelligent functions. Based on our participation in the LRC of the ESA, it is shown how the huge amount of 3D point cloud data from 3D LRF can be tremendously reduced. Concretely, large sets of points are replaced by planar surface patches that are fitted into the data in an optimal way. The underlying computations are very efficient and hence suited for online computations onboard of the robot.
  • Keywords
    aerospace robotics; intelligent robots; laser ranging; mobile robots; path planning; robot vision; telerobotics; 3D laser range finder; 3D perception; autonomous robot; intelligent autonomous function; lunar robotics challenge; mobile robot operation; motion level teleoperation; path planning; planar surface fast extraction; planetary exploration; situational awareness improvement; Context modeling; Intelligent robots; Intelligent sensors; Mobile robots; Moon; Orbital robotics; Project management; Remotely operated vehicles; Robot sensing systems; Stereo vision; 3-D mapping; Space robotics; autonomy; plane fitting; planetary exploration; surface representation; telerobotics;
  • fLanguage
    English
  • Journal_Title
    Robotics & Automation Magazine, IEEE
  • Publisher
    ieee
  • ISSN
    1070-9932
  • Type

    jour

  • DOI
    10.1109/MRA.2009.934822
  • Filename
    5306926