DocumentCode :
1550817
Title :
Discovering the Most Influential Sites over Uncertain Data: A Rank-Based Approach
Author :
Zheng, Kai ; Huang, Zi ; Zhou, Aoying ; Zhou, Xiaofang
Author_Institution :
Sch. of Inf. Technol. & Electr. Eng., Univ. of Queensland, Brisbane, QLD, Australia
Volume :
24
Issue :
12
fYear :
2012
Firstpage :
2156
Lastpage :
2169
Abstract :
With the rapidly increasing availability of uncertain data in many important applications such as location-based services, sensor monitoring, and biological information management systems, uncertainty-aware query processing has received a significant amount of research effort from the database community in recent years. In this paper, we investigate a new type of query in the context of uncertain databases, namely uncertain top-k influential sites query (UTkIS query for short), which can be applied in a wide range of application areas such as marketing analysis and mobile services. Since it is not so straightforward to precisely define the semantics of top-k query with uncertain data, in this paper we introduce a novel and more intuitive formulation of the query on the basis of expected rank semantics. To address the efficiency issue caused by possible worlds exploration, we propose effective pruning rules and a divide-and-conquer paradigm such that the number of candidates as well as the number of possible worlds to be considered can be significantly reduced. Finally, we conduct extensive experiments on real data sets to verify the effectiveness and efficiency of the new methods proposed in this paper.
Keywords :
database management systems; divide and conquer methods; query processing; uncertainty handling; UTkIS query; database community; divide-and-conquer paradigm; influential site discovery; pruning rules; query formulation; rank semantics; rank-based approach; uncertain data; uncertain databases; uncertain top-k influential sites query; uncertainty-aware query processing; Databases; Mobile radio mobility management; Nearest neighbor searches; Pipeline processing; Probabilistic logic; Recurrent neural networks; Semantics; Uncertain data; reverse nearest neighbor query; top-k query;
fLanguage :
English
Journal_Title :
Knowledge and Data Engineering, IEEE Transactions on
Publisher :
ieee
ISSN :
1041-4347
Type :
jour
DOI :
10.1109/TKDE.2011.121
Filename :
5871623
Link To Document :
بازگشت